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NONLINEAR PROBLEMS IN WAVE PROPAGATION 

BY 

Klaus Oswatitsch 

ABSTRACT 

This report presents a new method for the theoretical predictions of weak 
shocks and Prandtl-Meyer expansions in unsteady flow or  in three-dimensional 
steady supersonic flow. 

Present applications include: wings with sonic leading edges in super- 
sonic flow, propagation of spherical and cylindrical waves including the projec- 
tile firing band, unsteady separation of bow shocks, wave propagation in magneto- 
hydrodynamics. 
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NONLINEAR PROBLEMS IN WAVE PROPAGATION 

I NTRODU CT I ON 

The propagation of weak waves, which I will treat in this lecture, is a 
problem of unsteady flow o r  of steady supersonic flow. This is, perhaps, a 
little out of your present interests because it has very little to do with space 
flight. On the other hand, it is quite a general problem. In fact, you may have 
to  contend with it o r  with a similar problem in some part of your research. 

It is not possible to  present in one hour the new theory we have developed 
during the past five years,  a development which is not finished yet. Therefore, 
I prefer to illustrate the main steps of the theory with a simple case and to  con- 
sider the physical significance in connection with the results. A t  the end of the 
manuscript of this lecture, you will find a list of pertinent references. I will 
refer to  some of these references during my talk. 

TWO-DIMENSIONAL SUPERSONIC FLOW 

One of the simplest cases of wave propagation is the two-dimensional 
steady supersonic flow around a profile. 

In the case of small disturbances, the flow can be described by the well- 
known theory of Ackeret, that is, by the linearized gas dynamic equation and the 
equation of irrotationality . 

The values, u and v ,  are the components of the velocity in the x and y direction; 
M is the Mach number. The index 0 is related to the undisturbed flow, and the 
index i designates disturbances of the first order. 

The inclination of the Mach lines of the configuration arawn in Figure 1 
is given by the coefficients of equation (I) . Because the coefficients are con- 
stant, the inclination of the Mach lines is constant. The Mach lines are straight 
and lie parallel to  the Mach lines of the undisturbed flow; for example, the two 



FIGURE I. TWO-DIMENSIONAL STEADY SUPERSONIC FLOW 
AROUND SLENDER PROFILE 

dashed Mach lines in Figure 1. Only between these two dashed Mach lines, which 
originate at the tip and at the end of the profile, does the theory of Ackeret give 
disturbances. In the case of two-dimensional flow, there is a jump in the two 
velocity components at these two Mach lines. This jump represents the leading 
shock wave and the trailing shock wave. It is well-known that this linear theory 
gives quite good results in the neighborhood of the profile. However, at great 
distances the results are absolutely wrong because the linear theory yields no 
attenuation of the disturbances in the two-dimensional case. The exact solution 
of this problem was first given by the well-known Prandtl-Busemann character- 
istic method. The disturbance caused by the profile propagates as you know 
along the Mach lines, which are straight lines, but does not propagate parallel 
to the undisturbed Mach lines. With respect to the divergence of these Mach 
lines, the shock strength decreases at the beginning as well as at the end of the 
disturbance. If the shocks are weak enough, the shock front can be considered as 
a bisectrix of the Mach line inclination immediately ahead and behind the shock 
front. This well-known formula of Pfriem plays quite an important role in the 
calculation of the shock wave fronts in our new theory. 

The equivalent linearization of the subsonic flow, which leads to the 
well-known Prandtl-Glauert analogy, gives much better results. As is well- 
known, the linearized subsonic theory gives quite good results of the disturbances 
at the profile boundary, and the accuracy of the theory increases with increas- 
ing distance. There is no doubt that the error of the supersonic linearization 
in the physical plane is caused by the wrong inclination of the Mach lines, and 
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it seems strange that none of the theoreticians have tried to  overcome the weak- 
nesses of the already classical linearized supersonic theory. The overcoming 
of these weaknesses is the purpose of our efforts. 

The importance of the inclination of the Mach lines is also easy to see in 
the three-dimensional case. The z direction in Figure 2 can be considered as 
the direction of the undisturbed supersonic flow at Mach number Mo = ,a. We 
can also consider z as the time coordinate of the unsteady two-dimensional 
problem of wave propagation in quiet air. In this case, you may consider the 
horizontal coordinate as the x axis and the coordinate normal to the plane as the 
y axis. In each case, the straight lines trace out the surface of the Mach cone, 
which limits the zone of influence of a disturbance placed in the tip of the Mach 
cone. The hyperbolas are curves of constant influence of the classical linearized 
theory. As shown in the figure, the influence jumps from 0 on the outside of the 
surface of the Mach cone to infinity on the inside of the surface of the Mach cone. 
The influence is greatest immediately on the inside of the Mach cone. If you turn 
the Mach cone upside down, you can consider the cone as a surface which limits 

- 3  -2 -1.5 - 1 -0.5 I 0.5 I 1.5 2 3 
c 

- 3  -2 -15 - 1  - 0 5  0 5  I 1.5 2 3 
X 

FIGURE 2. MACH CONE AND SURFACES O F  CONSTANT INFLUENCE IN 
PLANE y = 0 O F  DISTURBANCE PLACED IN ORIGO 
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the dependence. This means that the dependence of a certain point in the space 
because of other influences is greatest on the inside of the cone of dependence. 
In Figure 3, you see the cone of dependence with the vertex at point Pz, together 
with a cone of influence at another point, PI. If the point of influence, Pi, is 
very close to the inside of the surface of the Mach cone of depencence at Pz, the 
influence and the dependence is very strong. On the other hand, if the point of 
influence moves outside the Mach cone of dependence, there is no immediate 
influence and no dependence at all. A little change in position causes a jump 
from lo.<;. iiifiiience io iiiiuirnum infiuence. Therefore, it is clear that a small 
change in Mach line inclination ( o r  a small deformation of the Mach cone) can 
cause in many cases an important change in the results. 

In the last 30 years, there has been a tremendous development of linear- 
ized theory starting from the linearized gas dynamic equation. Many examples 
of flow around bodies of revolution and wings in steady supersonic flow with and 
without inclination, supersonic flutter problems and flow around accelerated 
and decelerated bodies were calculated. The unsteady case of wave propagation 
in quiet air  is investigated in papers of Lord Raleigh, and many formulas of the 

t' 

X 

FIGURE 3. INFLUENCE OF DISTURBANCE IN POINT Pi TO FLOW IN POINT P2 
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supersonic flow theory are closely related to older results by this author. There- 
fore, we would call this already classical method of linearization in physical 
space, the "acoustical method. 
approximation also includes a linearization. 
cannot be used to distinguish the older from the new method of treatment. 

You will see that the new theory in its first 
Tnerefore, the word linearization 

To avoid fixing the Mach line, the Mach surfaces and the Mach cones in 
the physical plane in our new theory, we introduce the Mach elements as inde- 
pendent variables. What we do is develop an analytical characteristic theory 
for  small disturbances. A s  in all characteristic theories the flow properties, 
such as velocity components and pressure, are dependent variables depending 
on certain characteristic independent variables. The coordinates, and in un- 
steady flow the time, are also dependent variables. Therefore, we expand the 
Mach number, the components of the velocity and the coordinates in series, 

x = xo+xi +.  . .; y =yo +y1+. . .; 2 = 2 0  + z 1 + .  . . Y ( 3) 

where the index 0 is related to the undisturbed flow and the indices 1 and 2 . . . 
designate the terms of the first and second order, etc.,  of a parameter as, for 
example, the thickness ratio or  the angle of inclination. 

In equation ( 2 ) ,  we get vo and wo equal to 0, and thus we assume undis- 
turbed parallel flow in the direction of the x axis. To solve the problem, we 
now need equations for the velocity components and also for unsteady flow the 
components for pressure o r  velocity of sound. We need another group of equa- 
tions fo r  the coordinates and possibly for the time. In the case of two-dimen- 
sional or  axisymmetrical flow, the equations for the components are the well- 
known compatibility equations. These a re  certain relations which the velocity 
components o r  the pressure have to satisfy along the Mach lines. In the more 
complicated case of three-dimensional flow o r  two-dimensional unsteady flow, 
the equations are certain relations between the so-called inner variables. We 
can derive the necessary equations for the coordinates, depending on the char- 
acteristic variables, from the equations for  the inclination of the characteristics. 
I would like to  explain this with the help of the two-dimensional steady supersonic 
flow. 

If we assume a steady supersonic parallel flow in the x direction with the 
Mach angle a0, we have two families of characteristics, = constant and = 
con stant. 
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These characteristics or Mach lines in the paraAAil flow are two families of 
straight lines (Fig. 4) . Equation (4) gives us the relation between the coordi- 
nates of the undisturbed flow xo , yo . . . and the characteristic variables 5 and 
77. For the inclination of the distrubed Mach lines, we obtain the well-known 
equations (6!, ir? 

in the second one for the right-hand Mach line with q = constant. 
first one foi- $lie iefi-hand Mach line with 5 = constant and 

y = t a n ( a + d ) . x  ; y  = t a n ( - a + $ ) . x  . (6 )  
77 7 7 5  5 

If we expand the equations with respect to small disturbances of the Mach angle 
cy and the flow angle 6, we can express the Mach angle and the flow angle by the 
disturbances of the components. We can use equation (3 )  to the first order and 
equation (5)  to derive the two equations for the disturbances of the coordinates 
xi and yi. 

FIGURE 4. SYSTEM OF MACH LINES IN UNDISTRUBED PARALLEL FLOW 
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I .. 

These 
at two 

x - y  c o t a o = - M d 2 c o [ v i t a n a , o - u l k ]  ; 

xIt+ yi5 cot a,o= +Md2 c [ v i t a n a o  +ut k]  ; k = -  [ (k+I)  tan2 a o + ( k - I ) ] .  

( 7) 
17 1q 

I 
0 2 

two linear differential equations are easy to integrate, and we finally arr ive 
linear equations for the disturbances of the coordinates xi and yi. 

x l - y i c o t a , o = - M d 2 c o ~  77 [vitancr o - u l k l d i ;  

5 xi + yi cot = Md2 co [vi tana, O + U ~  k] d $ . 
The right-hand integrals have no kernel, and we can easily make the integration 
if we know the disturbances, ui and vi, depending on the characteristic coordi- 
nates. The equations ( 8) a r e  for the two-dimensional case already derived in 
a paper of C. C. Lin [ I ] . The derivations in our paper are much more general. 
We obtain similar equations in the three-dimensional case and in the three- 
dimensional unsteady flow, and we have shown that we can also apply equations 
(8) to axisymmetrical o r  similar cases. In this later generalization, ui and vi 
are naturally not solutions of the two-dimensional flow case but of more general 
flows. 

The equations (4) between 6 and q on one side and xo and yo on the other 
side are not approximations for the Mach lines as in the acoustical theory. They 
are exact relations between 5 ,  q and the coordinates of no disturbance. There- 
fore, instead of [ and q we can introduce with the help of equation (4) o r  (5) xo 
and yo as independent variables. If we do that in the compatibility equations, we 
get for  the first order disturbances, ul and vi, the linear differential equation 

- 0 .  hi mi h i  mi 
a 0  mo wo a 0  

( I  -Mi )  - + - = o ; -  - - -  

These equations have the same form as equation (I) of the acoustical theory with 
the important difference that the independent variables xo and yo in the f i r s t  order 
of the analytical characteristic theory have been substituted for  the independent 
variables x and y of the acoustical theory. In general, one can show that in the 
three-dimensional and in the unsteady case the equations are the same in the 
first order as in the acoustical theory except x, y, z and the time t have been 
replaced by xo, yo, zo and the time to. In the special case of axisymmetrical 
flow in the equation of continuity, the term vi/y is to be replaced according to 
equation ( I O )  . 
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In equation ( 3 )  you also see certain relationships to the method of Whitham and 
to the Poincarg-Lighthill-Kuo method. The difference is that the coordinate 
disturbances in the latter theory are introduced on certain singular places in the 
space. In our theory, the coordinate disturbances are functions of the character- 
istic variables and give, therefore, the location of characteristic surfaces o r  
lines in the physical space. 

In the new theory, we do not work in the physical space as in the acoustics; 
theory but in a characteristic space with the coordinates xo, yo, zo and the time 
to. In this space, the Mach lines are exact straight lines. We can introduce 
plane Mach surfaces and exact circular Mach cones, and we have to introduce the 
initial and boundary conditions of the characteristic space. Af ter  we have solved 
the problem in the characteristic space, we have to find the location of the char- 
acteristic independent variables in the physical plane by integration, according 
to equations ( 8). In the case of three o r  more independent variables, we do not 
have to  integrate along characteristics but along so-called Itbicharacteristics. I t  

It would take too much time to explain the general thrse-dimensional method in 
this lecture. However, even in this case the mathematical handling is not com- 
plicated. 

The translation of the boundary and initial conditions from the physical 
space to the characteristic space is easy in these cases where the acoustical 
theory gives good results near the body. In the cases where the acoustical theory 
gives wrong o r  no results near the body, the translation of the boundary conditions 
can cause difficulties and several problems are still not solved. However, one 
of the solved problems, which I will illustrate later,  is the solution of the flow 
field about a delta wing with sonic leading edges. 

In the cases where the acoustical theory gives good results near the body, 
the work for the new theory is less  than twice the old theory because the inte- 
grations to obtain the coordinates according to equations (8) are much easier 
than the solution of the acoustical problem. In the many cases where we already 
had acoustical results, we very easily applied them to our theory by putting in 
the results fo r  the components and the pressure instead of x, y . . . and XO, yo . . . 

I 

c 

In all cases we get not direct shock waves but an overlapping in the phy- 
sical plane around the place we would get shock waves. We can then calculate 
the front of the shock wave in the region of overlapping by the formula of Pfriem 
and fit in the shock front in our results. 
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In Figure 5 you see the results at the cone cylinder in supersonic flow 
calculated by W. Schneider [2]. Naturally, one can also calculate smooth bodies 
much easier. According to Whitham, the front shock wave has a strength of the 
fourth power of the thickness ratio. At the shoulder of the body originates a 
generalized Prandtl-Meyer expansion as you see. In all cases where comparison 
with results of Whitham o r  with results of the second order theory of Van Dyke 
was possible, we obtain complete agreement [ 3 - 81 . 

In the next six figures I will show results of E. Y. C. Sun [ 9, 101 con- 
cerning the flow around the conical delta wings without inclination and with near 
sonic edges. It is a cone with a rhombic cross  section, as shown in Figure 6. 
It is well-known that for a conical wing with sonic leading wedges the shock is 
pushed away from the leading edge to an upstream position because of the wedge 
like c ross  section. This means that these are Mach lines going from the sonic 
edge upstream to  the front shock. We can obtain such Mach lines only by using 
a solution with the subsonic leading edge in the characteristic plane. M r .  Sun 
has used these solutions and obtains in the physical space wings with barely 

Ovrrlappinp 
Zone 

FIGURE 5. SUPERSONIC FLOW ALONG CIRCULAR CONE-CYLINDER 
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subsonic leading edges, with sonic leading edges and with barely supersonic 
leading edges. The shock waves a r e  ahead of the leading edges as I will show 
in the following figures. Figure 7 is the case of the delta wing with 10 percent 
thickness ratio and a Mach number of Mo = J2. The angle of the leading edge 
is 90 percent of the Mach angle. The shock wave is the dotted line, and a family 
of left-hand Mach lines is drawn. Also shown a r e  the undisturbed 45-degree 
Mach lines ahead of the shock front and the disturbed Mach lines behind the 
shock front flowing into the shock. 

Figure 8 shows the same delta wing with the addition of a sonic leading 
edge. The leading edge is parallel to the undisturbed Mach lines, and the shock 
front is pushed ahead of the leading edge. Figure 9 shows the wing with the same 
aspect ratio [sonic leading edge] but with a thickness ratio of 16 percent. Now 
with respect to the thicker wing, the shock wave is  pushed farther ahead of the 
leading edge. The results of Figures 8 and 9 are related by the similarity law 
by S. B. Berndt [ 111 for sonic leading edges. The new theory satisfies all of 
these sirrL!arity laws. 

In Figure 10 you see four different cases of the flow around the rhombic 
cone. In the cross-sectional plane of the wing, the full circle is the trace of the 
cross  section of the undisturbed Mach cone, and the dotted line is a trace of 
the cross  section of the shock wave in that plane. In the first case, we have just 
a sonic edge; the leading edge touches the undisturbed Mach cone. The shock 
wave in the plane of the wing is pushed farther away as in the plane perpendicular 
to the wing. In the second case, the shock wave is just touching the leading edge 
of the wing. N o  solution exists for this case. In the third case, we already have 
a small supersonic leading edge. The shock has already attached the leading 
edge, but there is still a curvature of the shock at the leading edge because 
immediately behind the shock on the wing we have here Mach lines parallel to 
the leading edge. The fourth case i s  a typical case of supersonic leading edge. 
The shock wave in the whole cross  section is still outside of the undisturbed 
Mach cone. The shock wave forms a plane surface at the leading edge. These 
results [ 101 a r e  still to be published. In Figure I 1  the drag coefficient, c of 

0’ this wing is plotted versus the ratio tan 8/tan a0 . 
For tan8/tan a. < 1 we obtain subsonic leading edges and for  tan O/tan %> 1 

supersonic leading edges. As is well-known, the acoustical theory gives at 
tan 8 = tan a0 a certain corner in the curve of the drag coefficient. The full line 
gives the result of our theory. You see that the drag coefficient for the sonic 
leading edge is about 20 percent less than the result of the acoustical theory. 
This i s  in accordance with the experiments. 

10 



FIGURE 6.  DELTA WING WITH RHOMBIC CROSS SECTION 
AND NEAR SONIC EDGES 

FIGURE 7. RHOMBIC DELTA WING WITH 10 PERCENT THICKNESS 
RATIO AND LEADING EDGE 90 PERCENT OF MACH ANGLE 



FIGURE 8. RHOMBIC DELTA WING WITH 10 PERCENT THICKNESS 
RATIO AND SONIC LEADING EDGE 

FIGURE 9. RHOMBIC DELTA WING WITH 16 P E R C E N T  THICKNESS RATIO 
AND SONIC LEADING EDGE 
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Sonic leading edge front shock 
detached. 
Solution: Subsonic leading edge. 

Supersonic leading edge front 
shock immediately in front of 
leading edge. 
Solution: Not known. 

Supersonic leading edge front shock 
curved and oblique to plane at wing. 
Solution: Supersonic leading edge. 

Supersonic leading edge front shock 
oblique to plane of wing w i th  straight 
piece. 
Solution: Supersonic leading edge. 

FIGURE IO. CROSS SECTION OF CONICAL SUPERSONIC FLOW AROUND 
RHOMBIC CONE WITH SONIC LEADING EDGE AND THREE TYPES O F  

SUPERSONIC LEADING EDGES 
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The propagation of a spherical wave from a center is shown in Figure 
12. The x axis is the distance from the center; the y axis gives the disturbance 
of density. The dotted line between i. 5 5 x 5 2.5 is the result of the acoustical 
distribution at a time t = 2 .5 .  The dotted line between 2 . 5  5 x 4 3 . 5  is the 
acoustical result for  the later time t = 3.5. The two full curves give the result 
of the new theory. The spherical wave starts with a shock, has the well-known 
N form and terminates with a shock. The difference between the acoustical 
theory and the new theory is quite large with respect to  the relative small den- 
sity disturbance of less than five percent for  this distmrn f r ~ m  the cater. 

Sonic boom results are shown in Figures 13 and 14. Figure 13 is in 
fact a picture drawn by L. Prandtl [ 121. Prandtl explains in this picture the 
separation of the front shock of a projectile at decelerating speed. This picture 
is quite old, and it is, therefore, not surprising that it is not right in all details. 
Prandtl marks the front shock as still attached at Mach number I. In reality, 
the shock has already separated from the tip of the projectile. Figure 14 shows 
the conditions in the characteristic space, that is, in the xo, coto plane with yo = 0. 
The full curve gives the trajectory of the tip of the projectile in the character- 
istic space. The origin is just at Mach number I, the trajectory of the tip having 
a 45-degree inclination. In the subsonic region, the disturbances' propagate 
faster than the projectile; therefore, the disturbances separate ahead of the body. 
To obtain the right physical results, i t  is necessary to  provide the trajectory 
curve of the body with a small corner in the supersonic region at the separation 
point. The corner must have such qualities so that the curve has no corner in 
the physical plane at the separation point. The report  of Stuff [ 131, my colla- 
borator who is in charge of this work, will be published this year. 

Figure 15 is related to  a more academic question which also has some 
practical interest. The calculation was made by H. Sonn [ i 4 ] .  This result  could 
already be calculated with the formulas given by C. C. Lin [ i ]  . At  the top of 
the figure a biplane is shown flying at Mach number Mo = 2. It is not exactly the 
Busemann biplane but for  our consideration this is not very important. The 
leading and trailing edges of the biplane are cusped to  avoid all shock waves at 
Mach number Mo = 2. If one now changes the Mach number of flight, if one 
decreases the Mach number as in the middle of the figure o r  increases the Mach 
number as at the bottom of the figure, very weak shock waves appear. They 
not only appear at the trailing edges but also at a certain distance behind the 
biplane. Such very weak shock waves are only found with analytical methods. 
It should not be possible to  find them with a graphic characteristic method o r  in 
an experiment, for  instance, in a Schlieren-picture. You would not detect any 
difference between such weak shock waves and a Mach line. This result shows 
that a steady supersonic flow has, in general, no shockless neighboring solutions. 

14 

I 



------ Acoustical Theory - Present Method .. 0.002 

0,6 0;7 09 0:9 I,O I:I I :2 

O.IOL 

0.05- 

PD 
0 B 
c = 0.. 
n 
00 - 
r, 

ID c 
0 

c .- 

n 
-0.05.. 

-0.107 

- 
35 x 

15 



M,= 0.8 

FIGURE 13. DECELERATING BODY WITH SEPARATING SHOCK 
WAVE NEAR SONIC SPEED 

FIGURE 14. TRAJECTORY AND MACH LINES IN XO, c O ,  t o  PLANE 
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M,=2 xx I .  

FIGURE 15. NEIGHBOURING SOLUTION OF SHOCKLESS BIPLANE 
IN STEADY SUPERSONIC FLOW 
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Therefore, this property -- that a flow has no shockless neighboring solutions -- 
is not a property of the transonic flow as many may assume, but a property of 
the supersonic flow. It is not at all necessary that a rectangular shock appear. 
The shock can be an extremely weak one which has no practical importance. 

D I S CUS S I ON 

The following is the answer to a question of higher order results. In 
the papers of W. Schneider [2 ]  you can find a second order result of the new 
theory. Schneider has calculated the second order to the supersonic flow 
around a circular cone and found full agreement with the results of Van Dyke. 
Concerning the higher orders,  one has to remark that one calculates first the 
order 0 of the coordinates. One continues then to calculate the first order of 
the components and in the third step with the help of equation ( 8) the f i r s t  order 
of the coordinates. Then one can continue to  the second order of the components 
and if necessary to the second order of the coordinates. For  example, it is 
justified to relate the first order results of the components to  the second order 
results of the components because the first order results of the coordinates lies 
just between the two orders of the components. If we give the first number to  the I 

coordinates and the second number to  the components, we can distinguish 0, I; 
I, I; I ,  2 . .  . The 0, 0 order is again the undisturbed flow. The 0, I order -- i 

that is, no disturbance of the characteristics but disturbances of the component -- 
is the acoustical theory; I, I is first order  disturbance of the coordinates and of 
the components. Almost all results given in this report were calculated in this 
order. ~ In the I, 2 theory we already have second order approximation in the 
components, as for  example in the results of Van Dyke, but we also have dis- 
turbance of the Mach lines to  the first order. 

The following i s  the answer to a question concerning the trailing wave of 
a body of revolution. If we have a body of revolution which ends with a tip it is 
well-known that one has on the end of this body a very small local subsonic re- 
gion. One should therefore assume that the new theory yields no results in the 
neighborhood of the end of the body. Nevertheless, Schneider [ 21 obtained a 
result because the logarithmic singularity is harmless.  Also, in the case of an 
axisymmetrical free jet which is not parallel we hope to obtain results in the 
whole physical plane including the very small subsonic region at the axis. 
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